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Abstract

In his seminal paper “A Natural Semantics for Lazy Evaluation”, John Launchbury proves his
semantics correct with respect to a denotational semantics, and outlines a proof of adequacy.

Previous attempts to rigorize the adequacy proof, which involves an intermediate natural semantics
and an intermediate resourced denotational semantics, have failed. We devised a new, direct proof
that skips the intermediate natural semantics. It is the first rigorous adequacy proof of Launchbury’s
semantics.

We have modeled our semantics in the interactive theorem prover Isabelle and machine-checked
our proofs. This does not only provide a maximum level of rigor, but also serves as a tool for further
work, such as a machine-checked correctness proof of a compiler transformation.

1 Introduction

The Natural Semantics for Lazy Evaluation created by Launchbury (1993) has turned out
to be a popular and successful base for theoretical treatment of lazy evaluation, especially
as the basis of analyzing language extensions (Nakata & Hasegawa, 2009; Nakata, 2010;
Sánchez-Gil et al., 2010; Eekelen & Mol, 2004; Baker-Finch et al., 2000). Therefore, its
correctness and adequacy is important in this field of research. The original paper defines a
standard denotational semantics to prove the natural semantics correct and adequate against.

Launchbury presents its correctness proof in sufficient detail, and it endures formal
verification with only small changes and clarifications.

His adequacy proof is only a rough outline, though. It suggests to establish the computa-
tional adequacy by two intermediate semantics:
• A modified natural semantics with slightly different rules for variable lookup and

function application, that is supposed to be closer to how the denotational semantic
works, and
• a resourced denotational semantics, i.e. one that keeps track of the number of steps

required to evaluate an expression.
The equivalence between the natural semantics and the alternative natural semantics was
not proven by Launchbury. Although quite intuitive, a rigorous proof is yet to be found.
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Sánchez-Gil et al. have attempted to perform this proof and obtained an equivalency proof
for just the change to the application rule (2014); the other half is still pending.

Having seen the difficulty of performing these proof steps on the side of the natural
semantics, we departed from the outline provided by Launchbury and skipped the alternative
natural semantics altogether. With a small, but important modification to the resourced
denotational semantics, which ensures that while evaluating an expression with finite
resources, values on the heap are used with fewer resources, the proof was possible.

We have implemented and mechanically verified all definitions, propositions and proofs
using the theorem prover Isabelle/HOL (Breitner, 2013). This way we can be confident that
there are no holes left in the proof that would again have to be filled by later generations.
Furthermore it provides a tool that can be used in further work: In (Breitner, 2015b), we use
the denotational semantics to show the functional correctness of a compiler transformation,
while we use the operational semantics to prove that the transformation does not degrade
the program’s performance (measured by the number of heap allocations).

Our contributions are:
• We reproduce and clarify Launchbury’s correctness proof (Sec. 3).
• We analyze the alternative natural semantics used in his adequacy proof outline and

show how to handle the differences on the denotational sides (Sec. 4.2).
• This way, we can provide a new and more direct proof of adequacy (Sec. 4.3).
• We provide an Isabelle implementation of the various definitions and a machine-

checked proof.
• We identify and discuss all adjustments to original definitions that we found to be

required or helpful when rigorizing this work (Sec. 2.3, 3.1 and 4.6), and discuss.

2 Launchbury’s semantics

Launchbury defines a semantics for a simple untyped lambda calculus consisting of variables,
lambda abstraction, applications and mutually recursive bindings:

x,y,z,w ∈ Var

e ∈ Exp ::= ńx.e | e x | x | let x1 = e1, . . . ,xn = en in e

The set of free variables of an expression e is denoted by fv(e); we overload this notation
and use fv with arguments of other types that may contain variable names.

We equate alpha-equivalent lambda abstractions and let bindings, i.e. ńx.x = ńy.y and
fv(ńx.y x) = {y}. The theoretical foundation used is Nominal logic (Urban & Kaliszyk,
2012). This does impose a few well-formedness side conditions, such as equivariance
of definition over expressions. We skip them in this presentation, and do so with good
conscience, as they have been covered in the machine-checked proof.

Note that the term on the right hand side of an application has to be a variable. A general
lambda term of the form e1 e2 would have to be pre-processed to let x = e1 in e1 x before it
can be handled by this semantics.
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Γ : ńx.e ⇓L Γ : ńx.e
LAM

Γ : e ⇓L ∆ : ńy.e′ ∆ : e′[x/y] ⇓L Θ : v

Γ : e x ⇓L Θ : v
APP

Γ : e ⇓L∪{x} ∆ : v

x 7→ e,Γ : x ⇓L x 7→ v,∆ : v
VAR

dom ∆∩ fv(Γ,e,L) = {} Γ,∆ : e ⇓L Θ : v

Γ : let ∆ in e ⇓L Θ : v
LET

Fig. 1. Launchbury natural semantics, as revised by Sestoft

2.1 Natural semantics

Launchbury gives this language meaning by a natural semantics, specified with the rules in
Figure 1, which obey the following naming convention for heaps and values:

Γ,∆,Θ ∈ Heap = Var 7→ Exp

v ∈ Val ::= ńx.e

A heap is a partial function from variables to expressions; the same type is used for the
list of bindings in a let. The domain of a heap Γ, written dom Γ, is the set of variables
bound in the heap. Heaps are not alpha-equated, so dom Γ⊆ fv(Γ). We write x 7→ e for the
singleton heap and use commas to combine heaps with distinct domain.

A value is an expression in weak head normal form. Here, the only values are lambda
abstractions. A judgment of the form Γ : e ⇓L ∆ : v means that the expression e with the
heap Γ reduces to v, while modifying the heap to ∆.

The set L was not present in Launchbury’s rules, but added by Sestoft (1997) to keep
track of variables that must be avoided when choosing new names in the LET rule, but
would otherwise not be present in the judgment any more (cf. Sec. 2.3.1).

We consider a judgment Γ : e ⇓L ∆ : v to be closed if fv(Γ,e)⊆ dom Γ∪L. Note that this
property is preserved by our semantics, as fv(∆,v)⊆ dom ∆∪L holds for closed judgments
as well.

The evaluation does not forget bindings, i.e. Γ : e ⇓L ∆ : v implies dom Γ⊆ dom ∆.

2.2 Denotational semantics

In order to show that the natural semantics behaves as expected, Launchbury defines a
standard denotational semantics for expressions and heaps, following Abramsky (1990).
The semantic domain Value is the initial solution to the domain equation

Value = (Value→ Value)⊥,

which distinguishes ⊥ from λx.⊥. Lifting between Value→ Value and Value is performed
using the injection Fn(_) and projection _ ↓Fn _. Values are partially ordered by v.

A semantic environment maps variables to values

ρ ∈ Env = Var→ Value

and the initial environment ⊥ maps all variables to ⊥. Environments are ordered by lifting
the order on Value pointwise.
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The environment ρ|S, where S is a set of variables, is the restriction of ρ to S:

(ρ|S)x =

{
ρ x, if x ∈ S

⊥ if x 6∈ S.

The environment ρ \ S is defined as the the restriction of ρ to the complement of S, i.e.
ρ \S := ρ|Var\S.

The semantics of expressions and heaps are mutually recursive. The meaning of an
expression e ∈ Exp in an environment ρ ∈ Env is written as JeKρ ∈ Value and is defined by

Jńx.eKρ := Fn(λv.JeKρt{x 7→v})

Je xKρ := JeKρ ↓Fn ρ x

JxKρ := ρ x

Jlet ∆ in eKρ := JeK{{∆}}ρ.

We can map this over a heap to obtain an environment:

Jx1 7→ e1, . . . ,xn 7→ enKρ := [x1 7→ Je1Kρ , . . . ,xn 7→ JenKρ ]

The semantics of a heap Γ ∈ Heap in an environment ρ , written {{Γ}}ρ ∈ Env, is then
obtained as a least fixed-point:

{{Γ}}ρ = (µρ
′.ρ ++dom ΓJΓKρ ′)

where

(ρ ++S ρ
′) x :=

{
ρ x, if x /∈ S

ρ ′ x, if x ∈ S.

is a restricted update operator.
The least fixed-point exists, as all involved operations are monotone and continuous, and

by unrolling the fixed-point once, we can see that
Lemma 1 (Application of the heap semantics)

({{Γ}}ρ)x =

{
JeK{{Γ}}ρ , if (x 7→ e) ∈ Γ

ρ x, if x /∈ dom Γ.

The following substitution lemma plays an important role in finding a more direct proof
of adequacy, but is also required for the correctness proof, as performed by Launchbury:
Lemma 2 (Semantics of substitution)

JeKρ(y7→ρ x) = Je[x/y]Kρ .

Proof
We first show ∀ρ.ρ x = ρ y =⇒ {{e}}ρ = {{e[x/y]}}ρ by induction on e, using parallel
fixed-point induction in the case for let. This allows us to calculate

JeKρ(y7→ρ x) = Je[x/y]Kρ(y7→ρ x) { as ρ(y 7→ ρ x)x = ρ(y 7→ ρ x)y }

= Je[x/y]Kρ { as y /∈ fv(e[x/y]). }

We sometimes write {{Γ}} instead of {{Γ}}⊥. In an expression {{Γ}}({{∆}}ρ) we omit the
parentheses and write {{Γ}}{{∆}}ρ .
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2.3 Discussions of modifications

It is rare that a formal system developed with pen and on paper can be formalized to the
letter, partly because of vagueness (what, exactly, is a “completely” fresh variable?), partly
because of formalization convenience, and partly because the stated facts – even if morally
correct – are wrong when read scrupulously, and our work is no exception. We discuss any
such divergence from Launchbury’s work here.

2.3.1 Naming

Getting the naming issues right is one of the major issues when formalizing anything
involving bound variables. In Launchbury’s work, the names are manifestly part of the
syntax, i.e. ńx.x 6= ńy.y, and his rules involve explicit renaming of bound variables to
fresh ones in the rule VAR. His definition of freshness is a global one, so the validity of a
derivation using VAR depends on everything around it. This is morally what we want, but
very unpractical.

Sestoft (1997) noticed this problem and fixed it by adding a set L of variables to the
judgment, so that every variable to be avoided occurs somewhere in Γ, e, or L. Instead of
renaming all bound variables in the rule VAR, he chooses fresh names for the new heap
bindings in the LET.

We build on that, but go one step further and and completely avoid bound names in the
expressions, i.e. ńx.x = ńy.y. We still have them in the syntax, of course, but these are just
representatives of the an α-equivalency class. Nominal logic (Urban & Kaliszyk, 2012),
which is implemented in Isabelle, forms the formal foundation for this. So in our rule LET

we do not have to rename the variables, but simply may assume that the variables used in
the representation of the let-expression are sufficiently fresh.

The names of bindings on the heap are not abstracted away in that manner; this follows
(Sánchez-Gil et al., 2012).

2.3.2 Closed judgments

Launchbury deliberately allows non-closed configurations in his derivations, i.e. configura-
tions with free variables in the terms that have no corresponding binding on the heap. This
is a necessity, as rule VAR models blackholing by removing a binding from the heap during
its evaluation.

With the addition of the set of variables to avoid, which will always contain such
variables, the question can be revisited. And indeed, Sestoft defines the notion of L-good
configurations, where all free variables are either bound on the heap, or contained in L.
He shows that this property is preserved by the operational semantics and subsequently
considers only L-good configurations. We follow this example with our definition of closed
judgments. Threading the closedness requirement through an proof by rule induction is a
typical chore contributing to the overhead of a machine-checked formalization.
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2.3.3 Join vs. update

Launchbury specifies his denotational semantics using a binary operation t on environments.
He does not define it explicitly, but the statements in his Section 5.2.1 leave no doubt that
he indeed intended this operation to denote the least upper bound of its arguments, as one
would expect. Unfortunately, with this definition, his Theorem 2 (which corresponds to our
Theorem 2) is false.

A counter example is e = x, v = (ńa. let b = b in b), Γ = ∆ = (x 7→ v) and ρ = (x 7→
Fn(λ_.Fn(λx.x))). Note that the denotation of v is Fn(λ_.⊥) in every environment. We
have Γ : e ⇓{} ∆ : v, so according to the theorem, JeK{{Γ}}ρ = JvK{{∆}}ρ should hold, but

JeK{{Γ}}ρ =
(
{{Γ}}ρ

)
x

= ρ xt JvK{{Γ}}ρ
= Fn(λ_.Fn(λx.x))tFn(λ_.⊥)
= Fn(λ_.Fn(λx.x)t⊥)
= Fn(λ_.Fn(λx.x))

6= Fn(λ_.⊥)
= JvK{{∆}}ρ .

The crucial property of the counter-example is that ρ contains compatible, but better
information for a variable also bound in Γ. The mistake in his correctness proof is in the step
({{x 7→ v,∆}}ρ)x = JvK{{x 7→v,∆}}ρ in the case for VAR, which should be ({{x 7→ v,∆}}ρ)x =
JvK{{x 7→v,∆}}ρ tρ x.

Intuitively, such rogue ρ are not relevant for a proof of the main Theorem 1. Nevertheless,
this issue needs to be fixed before attempting a formal proof. One possible fix is to replace t
by a right-sided update operation that just throws away information from the left argument
for those variables bound on the right. We use the syntax ρ ++S ρ ′ for this operation, and
by using that the proof goes through in full rigor.

It is slightly annoying having to specify the set S in this operation explicitly, as it is
usually clear “from the context’: Morally, it is the set of variables that the object on the right
talks about. But as environments, i.e. total functions from Var→ Value, do not distinguish
between variables not mentioned at all and variables mentioned, but bound to ⊥, this
information is not easily exploitable in a formal setting.

For the same reason we replace Launchbury’s ordering ≤ on environments by the more
explicit equality between restricted environments in the formulation of Theorem 2.

3 Correctness

The main correctness theorem for the natural semantics is

Theorem 1 (Correctness) If Γ : e ⇓L ∆ : v holds and is closed, then JeK{{Γ}} = JvK{{∆}}.

In order to prove this by rule induction, we have to generalize it to

Theorem 2 (Correctness, generalized) If Γ : e ⇓L ∆ : v holds and is closed, then for all
environments ρ ∈ Env we have JeK{{Γ}}ρ = JvK{{∆}}ρ and ({{Γ}}ρ)|dom Γ = ({{∆}}ρ)|dom Γ.
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Our proof follows Launchbury’s steps, but differs in some details. Two required technical
lemmas are stated and proved subsequently.

For clarity, we write ρ =|S ρ ′ for ρ|S = ρ ′|S.

Proof
by induction on the derivation of Γ : e ⇓L ∆ : v. Note that in such a derivation, all occurring
judgments are closed.

Case: LAM

This case is trivial.

Case: APP

The induction hypotheses are JeK{{Γ}}ρ = Jńy.e′K{{∆}}ρ and {{Γ}}ρ =|dom Γ
{{∆}}ρ as well as

Je′[x/y]K{{∆}}ρ = JvK{{Θ}}ρ and {{∆}}ρ =|dom ∆
{{Θ}}ρ .

We have {{Γ}}ρ x = {{∆}}ρ x: If x ∈ dom Γ, this follows from the induction hypothesis.
Otherwise, we know x ∈ L, as the judgment is closed, and the new names bound in ∆ avoid
L, so we have ρ x on both sides.

While the second part follows from the corresponding inductive hypotheses and dom Γ⊆
dom ∆, the first part is a simple calculation:

Je xK{{Γ}}ρ = JeK{{Γ}}ρ ↓Fn {{Γ}}ρ x

{ by the denotation of application }
= Jńy.e′K{{∆}}ρ ↓Fn {{Γ}}ρ x

{ by the induction hypothesis }
= Jńy.e′K{{∆}}ρ ↓Fn {{∆}}ρ x

{ see above }
= Je′K({{∆}}ρ)(y7→{{∆}}ρ x)

{ by the denotation of lambda abstraction }
= Je′[x/y]K{{∆}}ρ
{ by Lemma 2 }

= JvK{{Θ}}ρ
{ by the induction hypothesis }

Case: VAR

We know that JeK{{Γ}}ρ ′ = JvK{{∆}}ρ ′ and {{Γ}}ρ ′ =|dom Γ
{{∆}}ρ ′ for all ρ ′ ∈ Env.

We begin with the second part:

{{x 7→ e,Γ}}ρ = µρ
′.(ρ ++dom Γ{{Γ}}ρ ′)[x 7→ JeK{{Γ}}ρ ′ ]

{ by Lemma 3 }
= µρ

′.(ρ ++dom Γ{{Γ}}ρ ′)[x 7→ JzK{{∆}}ρ ′ ]{
by the induction hypothesis. Note that
we invoke it for ρ

′ with ρ
′ 6= ρ!

}
=|dom (x 7→e,Γ)

µρ
′.(ρ ++dom ∆{{∆}}ρ ′)[x 7→ JzK{{∆}}ρ ′ ]

{ by the induction hypothesis; see below }
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= {{x 7→ v,∆}}ρ
{ by Lemma 3 }

The second but last step is quite technically, as we need to push the |dom (x 7→e,Γ) inside
the fixed-point operator. This goes through by parallel fixed-point induction if we first
generalize it to |Var\dom ∆∪dom (x 7→e,Γ), the restriction to the complement of the new variables
added to the heap during evaluation of x.

The first part now follows from the second part:

JxK{{x 7→e,Γ}}ρ = ({{x 7→ e,Γ}}ρ)x

= ({{x 7→ v,∆}}ρ)x { by the first part and x ∈ dom (x 7→ e,Γ) }
= JvK{{x 7→v,∆}}ρ { by Lemma 1. }

Case: LET

We know that JeK{{Γ,∆}}ρ = JvK{{Θ}}ρ and {{Γ,∆}}ρ =|dom (Γ,∆)
{{Θ}}ρ . For the first part we

have

Jlet ∆ in eK{{Γ}}ρ = JeK{{∆}}{{Γ}}ρ { by the denotation of let-expressions }
= JeK{{Γ,∆}}ρ { by the following Lemma 4 }
= JvK{{Θ}}ρ { by the induction hypothesis }

and for the second part we have

{{Γ}}ρ =|dom Γ
{{∆}}{{Γ}}ρ { because dom ∆ are fresh }

= {{Γ,∆}}ρ { again by Lemma 4 }
=|dom (Γ,∆)

{{Θ}}ρ. { by the induction hypothesis. }

In the case for VAR, we switched from the usual, simultaneous definition of the heap
semantics to an iterative one, in order to be able to make use of the induction hypothesis:
Lemma 3 (Iterative definition of the heap semantics)

{{x 7→ e,Γ}}ρ = µρ
′.
(
(ρ ++dom Γ {{Γ}}ρ ′)[x 7→ JeK{{Γ}}ρ ′ ]

)
.

A corresponding lemma can be found in Launchbury (1993), but without proof. As the
proof involves some delicate fixed-point-juggling, we include it here in detail:

Proof
Let L = (λρ ′.ρ ++dom (x 7→e,Γ)Jx 7→ e,ΓKρ ′) be the functorial of the fixed point on the left
hand side, R be the functorial on the right hand side.

By Lemma 1, we have
(1) (µL)y = Je′KµL for y 7→ e′ ∈ dom Γ,
(2) (µL)x = JeKµL,
(3) (µL)y = ρ y for y /∈ dom (x 7→ e,Γ)

Similarly, by unrolling the fixed points, we have
(4) (µR)y = Je′K{{Γ}}(µR) for y 7→ e′ ∈ dom Γ,
(5) (µR)x = JeK{{Γ}}(µR),
(6) (µR)y = ρ y for y /∈ dom (x 7→ e,Γ),

and also for ρ ′ ∈ Env (in particular for ρ ′ = (µL), (µR)), again using Lemma 1,
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(7) ({{Γ}}ρ ′)y = JeK{{Γ}}ρ ′ for y 7→ e′ ∈ dom Γ,
(8) ({{Γ}}ρ ′)y = ρ ′ y for y /∈ dom Γ.

We obtain
(9) {{Γ}}(µR) = (µR)

from comparing (4)–(6) with (7) and (8). We can also show
(10) {{Γ}}(µL) = (µL),

by antisymmetry and using that least fixed points are least pre-fixed points:
v: We need to show that (µL)++dom ΓJΓK(µL) v (µL), which follows from (1).
w: We need to show that {{Γ}}(µL)++dom (x 7→e,Γ)Jx 7→ e,ΓK{{Γ}}(µL) v {{Γ}}(µL). For

dom Γ, this follows from (7), so we show JeK{{Γ}}(µL) v (µL)x = JeK(µL), which
follows from the monotonicity of JeK_ and case v.

To show the lemma, (µL) = (µR), we use the antisymmetry of v and the leastness of
least fixed points:
v: We need to show that L(µR) = µR, i.e.

— ρ y = (µR)y for y /∈ dom (x 7→ e,Γ), which follows from (6),
— Je′KµR = (µR)y for y 7→ e′ ∈ Γ, which follows from (4) and (9) and
— JeKµR = (µR)x, which follows from (5) and (9).

w: Now we have to show that R (µL) = (µL), i.e.
— ρ y = (µL)y for y /∈ dom (x 7→ e,Γ), which follows from (3),
— Je′K{{Γ}}(µL) = (µL)y for y 7→ e′ ∈ Γ, which follows from (1) and (10), and
— JeK{{Γ}}(µL) = (µL)x, which follows from (2) and (10).

The final lemma required for the correctness proof shows that the denotation of set of
bindings with only fresh variables can be merged with the heap it was defined over:

Lemma 4 (Merging the heap semantics) If dom Γ is fresh with regard to ∆ and ρ , then

{{Γ}}{{∆}}ρ = {{Γ,∆}}ρ.
Proof
We use the antisymmetry of v, and the leastness of least fixed points.
v: We need to show that {{∆}}ρ ++dom ΓJΓK{{∆,Γ}}ρ = {{∆,Γ}}ρ , which we verify point-

wise.
— For x ∈ dom Γ, this follows directly from Lemma 1.
— For x /∈ dom Γ, this holds as the variables bound in Γ are fresh, so the bindings

in {{∆}}ρ keep their semantics.
w: We need to show that ρ ++dom (Γ,∆)JΓ,∆K{{Γ}}{{∆}}ρ = {{Γ}}{{∆}}ρ .

— For x ∈ dom Γ, this follows from unrolling the fixed point on the right hand side
once.

— For x 7→ e ∈ dom ∆ (and hence x /∈ dom Γ), we have

(ρ ++dom (Γ,∆)JΓ,∆K{{Γ}}{{∆}}ρ)x

= JeK{{Γ}}{{∆}}ρ { by Lemma 1 }

= JeK{{∆}}ρ { because dom Γ is fresh with regard to e }

= ({{∆}}ρ)x { by unrolling the fixed point }

= (JΓK{{∆}}ρ)x { because x /∈ dom Γ and Lemma 1. }
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— For x /∈ dom Γ∪dom ∆, we have ρ x on both sides.

3.1 Discussions of modifications

Our main Theorem 1 and the generalization in Theorem 2 differ from Launchbury’s
corresponding Theorem 2. The additional requirement that the judgments are closed is
discussed in Section 2.3.

Furthermore, the second part of Theorem 2 is phrased differently. Launchbury states
{{Γ}}ρ ≤ {{∆}}ρ where ρ ≤ ρ ′ is defined as (∀x.ρ x 6=⊥ =⇒ ρx = ρ ′x), i.e. ρ ′ agrees with
ρ on all variables that have a meaning in ρ .

The issue with this definition is that there are two reasons why {{Γ}}ρ x = ⊥ can hold:
Either x /∈ dom Γ, or x ∈ dom Γ, but bound to a diverging value. Only the first case is
intended here, and actually ≤ is used as if only that case can happen, e.g. in the treatment of
VAR in the correctness proof. We therefore avoid the problematic ≤ relation and explicitly
show {{Γ}}ρ =|dom Γ

{{∆}}ρ .

4 Adequacy

A correctness theorem for a natural semantics is not worth much on its own. Imagine a
mistake in side condition of the LET rule that accidentally prevents any judgment to be
derived for programs with a let – the correctness theorem would still hold.

So we want to ensure that all programs that have a meaning, in our case according to the
denotational semantics, also have a derivation:

Theorem 3 (Adequacy) For all e, Γ and L, if JeK{{Γ}} 6=⊥, then there exists ∆ and v so that
Γ : e ⇓L ∆ : v.

The proof uses a modified denotational semantics that keeps track of the number of
steps required to determine the non-bottomness of e, which we will now introduce, prove
adequate and show its relationship to the standard denotational semantics.

4.1 The resourced denotational semantics

The domain used to count the resources is a solution to the equation C = C⊥. The lifting is
done by the injection function C : C→C, so the elements are⊥@C⊥@C (C⊥)@ · · ·@C∞

– this is isomorphic to the extended naturals. We use r for variables ranging over C.
The resourced semantics N JeKρ r now takes an additional argument r∈C which indicates

the number of steps the semantics is still allowed to perform: Every recursive call in the
definition of N JeKρ r peels off one application of C until none are left.

The intuition is that if we pass in an infinite number of resources, the two semantics
coincide:

∀x.ρ x = σ x C∞ =⇒ JeKρ = N JeKσ C∞,

as Launchbury puts it. While the intuition is true, it cannot be stated that naively: Because
the semantics of an expression is now a function taking a C, this needs to be reflected in the
domain equation, so we obtain a different domain, as observed by Sánchez-Gil et al. (2011):

CValue = ((C→ CValue)→ (C→ CValue))⊥,
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The lifting and the projection functions are hence

CFn(_) : (C→ CValue)→ (C→ CValue)→ CValue

_ ↓CFn _: CValue→ (C→ CValue)→ (C→ CValue).

We use σ for variables ranging over resourced environments, σ ∈ Var→ (C→ CValue).
The definition of the resourced semantics resembles the definition of the standard

semantics, with some resource bookkeeping added:

N JeKσ ⊥ :=⊥
N Jńx.eKσ (C r) := CFn(λv.N JeKσt{x 7→v}|r)
N Je xKσ (C r) := ((N JeKσ r) ↓CFn (σ x)|r) r

N JxKσ (C r) := σ x r

N Jlet ∆ in eKσ (C r) := N JeK{{∆}}σ r

where f |r restricts a function f with domain C to take at most r resources: f |r := (λ r′. f (ru
r′)).

The semantics of the heap is defined as before:

N{{Γ}}σ := (µσ
′.σ ++dom Γ N JΓKσ ′).

Given the similarity between this semantics and the standard semantics, it is not surprising
that Lemmas 1, 2, 3 and 4 hold as well. In fact, in the formal development, they are stated
and proven abstractly, using locales (Ballarin, 2014) as a modularization tool, and then
simply instantiated for both variants of the semantics.

The correctness lemma needs some adjustments, as a more evaluated expression requires
fewer resources. We therefore obtain an inequality:

Lemma 5 (Correctness, resourced) If Γ : e ⇓L ∆ : v holds and is closed, then for all envi-
ronments σ we have N JeK{{Γ}}σ vN JvK{{∆}}σ and (N{{Γ}}σ)|dom Γ v (N{{∆}}σ)|dom Γ.

Proof
Analogously to the proof of Theorem 2.

4.2 Denotational black holes

The major difficulty in proving computational adequacy is the blackholing behavior of the
operational semantics: During the evaluation of a variable x the corresponding binding is
removed from the heap. Operationally, this is desirable: If the variable is called again during
its own evaluation, we would have an infinite loop anyways.

But obviously, the variable is still mentioned in the current configuration, and simply
removing the binding will change the denotation of the configuration in unwanted ways:
There is no hope of proving N JeKN{{x 7→e,Γ}} = N JeKN{{Γ}}.

But we can prove a weaker statement, which reflects the idea of “not using x during its
own evaluation” more closely:

Lemma 6 (Denotational blackholing)

N JeKN{{x 7→e,Γ}}r 6=⊥ =⇒ N JeKN{{Γ}}r 6=⊥
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This is a consequence of the following lemma, which states that during the evaluation of
an expression using finite resources, only fewer resources will be passed to the members of
the environment (which are of type C→ CValue):

Lemma 7

N JeKσ |C r = N JeK(σ |r)|C r

Proof
by induction on the expression e.

In order to show N JeKσ |C r =N JeK(σ |r)|C r it suffices to show N JeKσ (C r′)=N JeK(σ |r) (C r)
for an arbitrary r′ v r.

The critical case is the one for variables, where e = x. We have

N JxKσ (C r′) = σ x r′ = (σ x|r) r′ = N JxK(σ |r) (C r′)

as r′ v r.
In the other cases, the result follows from the fact that nested expressions are evaluated

with r′ resources or, in the case of lambda abstraction, wrapped inside a |r′ restriction
operator.

For the case of let, a related lemma for heaps needs to be proven by parallel fixed-point
induction, namely ∀r.(N{{Γ}}σ)|r = (N{{Γ}}(σ |r))|r.

Equipped with this lemma, we can begin the

Proof (of Lemma 6)
Let r′ be the least resource such that N JeKN{{x 7→e,Γ}}(C r′) 6= ⊥. Such an r′ exists by the
assumption, and C r′ v r, and by the continuity of the semantics r′ 6= C∞. In particular,
N JeKN{{x 7→e,Γ}}r′ =⊥.

We first show

N{{x 7→ e,Γ}}|r′ vN{{Γ}} (∗)
by bounded fixed-point induction. So given an arbitrary σ vN{{x 7→ e,Γ}}, we may assume
σ |r′ vN{{Γ}} and have to prove N Jx 7→ e,ΓKσ |r′ vN{{Γ}}, which we do point-wise:

For y 7→ e′ ∈ Γ, this follows from

N Jx 7→ e,ΓKσ |r′ y = N Je′Kσ |r′
= N Je′Kσ |r′ |r′ { by Lemma 7 }

vN Je′Kσ |r′

vN Je′KN{{Γ}} { by the induction hypothesis }

= N{{Γ}} y { by Lemma 1 }

while for x, this follows from

N Jx 7→ e,ΓKσ |r′ x = N JeKσ |r′
vN JeKN{{x 7→e,Γ}}|r′ { using σ vN{{x 7→ e,Γ}} }

=⊥ { by the choice of r′ }

= N{{Γ}} x { as x /∈ dom Γ. }
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So we can conclude the proof with

⊥@ N JeKN{{x 7→e,Γ}}(C r′) { by the choice of r′ }

= N JeKN{{x 7→e,Γ}}|r′ (C r′) { by Lemma 7 }

vN JeKN{{Γ}}(C r′) { by (∗) }

vN JeKN{{Γ}}r { as C r′ v r }

4.3 Resourced adequacy

With the necessary tools in place to handle blackholing, we can do the adequacy proof for
the resourced semantics:

Lemma 8 (Resourced semantics adequacy) For all e, Γ and L, if N JeK{{Γ}} r 6=⊥, then
there exists ∆ and v so that Γ : e ⇓L ∆ : v.
Proof
Because the semantics is continuous, it suffices to show this for r = Cn ⊥, and perform
induction on this n, with arbitrary e, Γ and L.

The case r =C0 ⊥=⊥ is vacuously true, as N JeK{{Γ}} ⊥=⊥.
For the inductive case assume that the lemma holds for r, and that N JeK{{Γ}} (C r) 6=⊥.

We proceed by case analysis on the expression e.

Case: e = x.
From the assumption we know that Γ = x 7→ e′,Γ′ for some e′ and Γ′, as otherwise the
denotation would be bottom, and furthermore that N Je′KN{{x 7→e′,Γ′}} r 6=⊥

With Lemma 6 this implies N Je′KN{{Γ′}} r 6=⊥, so we can apply the induction hypothesis
and obtain ∆ and v with Γ′ : e′ ⇓L∪{x} ∆ : v. This implies x 7→ e′,Γ′ : x ⇓L ∆ : v by rule VAR,
as desired.

Case: e = e′ x.
Assume that fv(Γ,e′)⊆ L. We do not lose generality here: If we can show a derivation in
the natural semantics with a larger set of variables to avoid than required, then the same
derivation is also valid with the required set L.

From the assumption we know that (N Je′KN{{Γ}} r ↓CFn (N{{Γ}} x)|r) r 6= ⊥. In par-
ticular (N Je′KN{{Γ}} r) 6= ⊥, so by the induction hypothesis we have ∆, y and e′′ with
Γ : e′ ⇓L ∆ : ńy.e′′, the first hypothesis of APP.

This judgment is closed by our extra assumption, so we use Lemma 5 to ensure that
N Je′KN{{Γ}} vN Jńy.e′′KN{{∆}} and N{{Γ}}vN{{∆}}. We can insert that into the inequality
above to calculate

⊥@ (N Je′KN{{Γ}} r ↓CFn (N{{Γ}} x)|r) r

v (N Jńy.e′′KN{{∆}} r ↓CFn (N{{∆}} x)|r) r

v (N Jńy.e′′KN{{∆}} r ↓CFn N{{∆}} x) r

v (CFn(λv.N Je′′KN{{∆}}t{y7→v}) ↓CFn N{{∆}} x) r

= N Je′′KN{{∆}}t{y 7→(N{{∆}} x)} r

= N Je′′[x/y]KN{{∆}} r { by Lemma 2 }
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which, using the induction hypothesis again, provides us with Θ and v so that the second
hypothesis of APP, ∆ : e′′[x/y] ⇓L Θ : v, holds, concluding this case.

Case: e = ńy.e′

This case follows immediately from rule LAM with ∆ = Γ and v = ńy.e′.

Case: e = let ∆ in e′

We have

⊥@ N Jlet ∆ in e′KN{{Γ}} r

vN Je′KN{{∆}}N{{Γ}}

= N Je′KN{{∆,Γ}} { by Lemma 4 }

so we have Θ and v with ∆,Γ : e′ ⇓L Θ : v and hence Γ : let ∆ in e′ ⇓L Θ : v by rule LET, as
desired.

4.4 Relating the denotational semantics

Lemma 8 is almost what we want, but it talks about the resourced denotational semantics.
In order to obtain that result for the standard denotational semantics, we need to relate these
two semantics. We cannot simply equate them, as they have different denotational domains
Value and C→ CValue. So we are looking for a relation /. between Value and CValue that
expresses the intuition that they behave the same, if the latter is given infinite resources. In
particular, it is specified by the two equations

⊥ /.⊥

and

(∀xy.x /. y C∞ =⇒ f x /. g y C∞) ⇐⇒ Fn( f ) /. CFn(g).

Unfortunately, this is not admissible as an inductive definition, as it is self-referential in a
non-monotone way, so the construction of this relation is non-trivial. This was observed
and performed by Sánchez-Gil et al. (2011), and we have subsequently implemented this
construction in Isabelle.

We lift this relation to environments ρ ∈ Env and resourced environments σ ∈ Var→
(C→ Value) by

ρ /.∗ σ ⇐⇒ ∀x.ρ x /. σ x C∞.

This allows us to state precisely how the two denotational semantics are related:

Lemma 9 (The denotational semantics are related) For all environments ρ ∈ Env and
σ ∈ Var→ (C→ Value) with ρ /.∗ σ , we have

JeKρ /. N JeKσ C∞.

Proof
Intuitively, the proof is obvious: As we are only concerned with infinite resources, all the
resource counting added to the denotational semantics becomes moot and the semantics are
obviously related. A more rigorous proof can be found in (Sánchez-Gil et al., 2011) and in
our formal verification.
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Γ : e ⇓L ∆ : ńy.e′ y 7→ x,∆ : e′ ⇓L Θ : v

Γ : e x ⇓L Θ : v
APP’

x 7→ e,Γ : e ⇓L ∆ : v

x 7→ e,Γ : x ⇓L ∆ : v
VAR’

Fig. 2. Launchbury alternative natural semantics

Corollary 10 For all heaps Γ, we have {{Γ}} /.∗ N{{Γ}}.

Proof
by parallel fixed-point induction and Lemma 9.

4.5 Concluding the adequacy

With this in place, we can give the

Proof (of Theorem 3)
By Corollary 10 we have {{Γ}} /.∗ N{{Γ}}, and with Lemma 9 this implies JeK{{Γ}} /.
N JeKN{{Γ}} C∞.

With our assumption JeK{{Γ}} 6=⊥ and the definition of /. this ensures that N JeK{{Γ}} C∞ 6=
⊥, and we can apply Lemma 8, as desired.

4.6 Discussions of modifications

Our adequacy proof diverges quite a bit from Launchbury’s. As this new proof constitutes a
major part of this paper’s contribution, we discuss the differences in greater detail.

Launchbury performs the adequacy proof by introducing an alternative natural semantics
(ANS) that is closer to the denotational semantics than the original natural semantics (NS).
He replaces the rules APP and VAR with the two rules given in Figure 2. There are three
differences to be spotted:

1. In the rule for applications, instead of substituting the argument x for the parameter y,
the variable y is added to the heap, bound to x, adding an indirection.

2. In the rule for variables, no update is performed: Even after x has been evaluated to
the value v, the binding x on the heap is not modified at all.

3. Also in the rule for variables, no black-holing is performed: The binding for x stays
on the heap during its evaluation.

Without much ado, Launchbury states that the original natural semantics and the alterna-
tive natural semantics are equivalent, which is intuitively obvious. Unfortunately, it turned
out that a rigorous proof of this fact is highly non-trivial, as the actual structure of the
heaps during evaluation differs a lot: The modification to the application rule causes many
indirections, which need to be taken care of. Furthermore, the lack of updates in the variable
rules causes possibly complex, allocating expressions to be evaluated many times, each
time adding further copies of already existing expressions to the heap. On the other side,
the updates in the original semantics further obscure the relationship between the heaps in
the original and the alternative semantics. On top of all that add the technical difficulty that
is due to naming issues: Variables that are fresh in one derivation might not be fresh in the
other, and explicit renamings need to be carried along.



ZU064-05-FPR LaunchburyAdequacyJFP 15 June 2015 14:45

16 J. Breitner

Sánchez-Gil et al. have attempted to perform this proof. They broke it down into two
smaller steps, going from the original semantics to one with only the variable rule changes
(called No-update natural semantics, NNS), and from there to the ANS. So far, they have
performed the second step, the equivalence between NNS and ANS, in a pen-and-paper
proof (2014), while relation between NS and NNS has yet resisted a proper proof.

Considering these difficulties, we went a different path, and bridged the differences not
on the side of the natural semantics, but on the denotational side, which turned out to work
well:

1. The denotational semantics for lambda expressions involves a change to the environ-
ment (Jńx.eKρ := Fn(λv.JeKρt{x 7→v})), while the natural semantics uses substitution
into the expression: e[x/y].
This difference is easily bridged on the denotational side by the substitution Lemma 2,
which is needed anyways for the correctness proof. See the last line of the application
case in the proof of Lemma 8 for this step.

2. The removal of updates had surprisingly no effect on the adequacy proof: The
main chore of the adequacy proof is to produce evidence for the assumptions of
the corresponding natural semantics inference rule, which is then, in the last step,
applied to produce the desired judgment. The removal of updates only changes the
conclusion of the rule, so the adequacy proof is unchanged.
Of course updates are not completely irrelevant, and they do affect the adequacy proof
indirectly. The adequacy proof uses the correctness theorem for the resourced natural
semantics (Lemma 5), and there the removal of updates from the semantics would
make a noticeable difference.

3. Finally, and most trickily, there is the issue of blackholing. We explain our solution in
Section 4.2, which works due to a small modification to the resourced denotational
semantics.
Our proof relies on the property that when we calculate the semantics of N JeKσ r, we
never pass more than r resources to the values bound in σ (Lemma 7). This concurs
with our intuition about resources.
In the original definition of the resourced semantics, this lemma does not hold: The
equation for lambda expression ignores the resources passed to it and returns a
function involving the semantics of the body:

N Jńx.eKσ (C r) := CFn(λv.N JeKσt{x 7→v})

With that definition, N Jńx.yKσ (C ⊥) = CFn(σ y), which depends on σ y r for all r,
contradicting Lemma 7.
Therefore we restrict the argument of CFn(_) to cap any resources passed to it at r.
Analogously we adjust the equation for applications to cap any resources passed to
the value of the argument in the environment, σ x.
These modifications do not affect the proof relating the two denotational semantics
(Lemma 9), as there we always pass infinite resources, and |C∞ is the identity function.
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5 Related work

A large number of developments on formal semantics of functional programming languages
in the last two decades build on Launchbury’s work; here is a short selection: Van Eekelen
& de Mol (2004) add strictness annotations to the syntax and semantics of Launchbury’s
work. Nakata & Hasegawa (2009) define a small-step semantics for call-by-need and relate
it to a Launchbury-derived big-step semantics. Nakata (2010) modifies the denotational
semantics to distinguish direct cycles from looping recursion. Sánchez-Gil et al. (2010)
extend Launchbury’s semantics with distributed evaluation. Baker-Finch et al. (2000) create
a semantics for parallel call-by-need based on Launchbury’s.

While many of them implicitly or explicitly rely on the correctness and adequacy proof
as spelled out by Launchbury, some stick with the original definition of the heap semantics
using t, for which the proofs do not got through (Eekelen & Mol, 2004; Nakata & Hasegawa,
2009; Sánchez-Gil et al., 2010; Baker-Finch et al., 1999), while others use right-sided
updates, without further explanation (Nakata, 2010; Baker-Finch et al., 2000). The work
by Baker-Finch et al. is particularly interesting, as they switched from the original to the
fixed definition between the earlier tech report and the later ICFP publication, unfortunately
without motivating that change.

Such disagreement about the precise definition of the semantics is annoying, as it creates
avoidable incompatibilities between these publications. We hope that our fully rigorous
treatment will resolve this confusion and allows future work to standardize on the “right”
definition.

Furthermore, none of these works discuss the holes in Launchbury’s adequacy proof, even
those that explicitly state the adequacy of their extended semantics. Our adequacy proof is
better suited for such extensions, as it is rigorous and furthermore avoids the intermediate
natural semantics.

This list is just a small collection of many more Launchbury-like semantics. Often the
relation to a denotational semantics is not stated, but nevertheless they are standing on the
foundations laid by Launchbury. Therefore it is not surprising that others have worked on
formally fortifying these foundations as well:

In particular Sánchez-Gil et al. worked towards rigorously proving Launchbury’s se-
mantics correct and adequate. They noted that the relation between the standard and the
resourced denotational semantics is not as trivial as it seemed at first, and worked out a
detailed pen-and-paper proof (2011). We have formalized this, fixing mistakes in the proof,
and build on their result here (Lemma 9).

They also bridged half the gap between Launchbury’s natural and alternative natural
semantics (Sánchez-Gil et al., 2014), and plan to bridge the other half. We avoided these
very tedious proofs by bridging the difference on the denotational side (Section 4.6).

As a step towards a mechanization of their work in Coq, they address the naming issues
and suggest a mixed representation, using de Bruijn indices for locally bound variables and
names for free variables (2012). This corresponds to our treatment of names in the formal
development, using the Nominal logic machinery (Urban & Kaliszyk, 2012) locally but not
for names bound in heaps.

Having an implementation of the present work in Isabelle does not only give us great
assurance about the correctness of our work, but additional is a tool to formalize further
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work. We have used these semantics to prove that the compiler analysis and transformation
“Call Arity” (Breitner, 2015a), which is implemented in the Haskell compiler GHC, is
semantics-preserving and does not degrade performance (Breitner, 2015b). We measure
performance on a sufficiently abstract level by counting allocations on the heap, for which
Launchbury’s semantics provides just the right level of detail.

6 Conclusion and Future Work

Was beweisbar ist, soll in der Wissenschaft nicht ohne Beweis geglaubt werden.1

— Richard Dedekind, Was sind und was sollen die Zahlen, 1888

In computer science we are in the happy situation that we can use the tools of logic and
mathematics to describe our artifacts, and hence to give proofs of our claims, and indeed,
we often do. But we are also in the unfortunate situation that our models become large and
complex, so our proofs becomes large and complex, without necessarily becoming harder or
more interesting. So classical pen-and-paper proofs are likely to be incomplete or erroneous,
without anyone noticing.

We can help ourselves here by using our computers check the proofs. This is what we
have done: We took an established formalism and with the help of the theorem prover
Isabelle, weeded out all mistakes, filled all the holes and clarified a lot of details.

Such mechanization is a thankless task: With today’s theorem provers, it is still very
laborious, and at the end one usually finds that everything is all right, and even though
there were no complete proofs before, the results still hold. Nevertheless, we should invest
the effort to fortify at least our foundations this way. We deem Launchbury’s semantics
important enough to warrant this effort.

We used our formalization to prove a compiler transformation correct, but the formaliza-
tion gap between Launchbury’s or Sestoft’s core calculus, and the full Core language used
by GHC is rather large. It would be very useful to have GHC Core formalized, possibly
building on Eisenberg’s specification (2013), allowing for much more use of formal methods
in the development of the Haskell compiler.
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