
1 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

PROGRAMMING PARADIGMS GROUP

Formally Proving a Compiler Transformation Safe

Joachim Breitner
Haskell Symposium 2015
3 August 2015, Vancouver

KIT – University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association www.kit.edu



Short summary

2 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

I formally proved that

Call Arity is safe.

“

W

hat exactly have you shown?”

“

H

ow did you prove that?”

“

A

re you sure about this?”

“

B

ut, . . . !”



Short summary

2 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

I formally proved that

Call Arity is safe.

“

W

hat exactly have you shown?”

“

H

ow did you prove that?”

“

A

re you sure about this?”

“

B

ut, . . . !”



Short summary

2 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

I formally proved that

Call Arity is safe.

“What exactly have you shown?”

“

H

ow did you prove that?”

“

A

re you sure about this?”

“

B

ut, . . . !”



Short summary

2 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

I formally proved that

Call Arity is safe.

“What exactly have you shown?”

“H ow did you prove that?”

“

A

re you sure about this?”

“

B

ut, . . . !”



Short summary

2 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

I formally proved that

Call Arity is safe.

“What exactly have you shown?”

“H ow did you prove that?”

“A re you sure about this?”

“

B

ut, . . . !”



Short summary

2 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

I formally proved that

Call Arity is safe.

“What exactly have you shown?”

“H ow did you prove that?”

“A re you sure about this?”

“B ut, . . . !”



What exactly is. . . Call Arity?

3 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

Call Arity is an arity analysis:

let fac 10 = id
fac x = ńy. fac (x+1) (y∗x)

in fac 0 1
=⇒

let fac 10 y = y
fac x y = fac (x+1) (y∗x)

in fac 0 1

So far: Naive forward arity analysis, see Gill’s PhD thesis from 96



What exactly is. . . Call Arity?

3 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

Call Arity is an arity analysis:

let fac 10 = id
fac x = ńy. fac (x+1) (y∗x)

in fac 0 1
=⇒

let fac 10 y = y
fac x y = fac (x+1) (y∗x)

in fac 0 1

So far: Naive forward arity analysis, see Gill’s PhD thesis from 96



What exactly is. . . the problem?

4 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

Eta-expanding a thunk is tricky:

let thunk = f x
in . . .

=⇒ let thunk y = f x y
in . . .

Sharing can be lost!

(unless “thunk” is used at most once in “. . . ”)



What exactly is. . . the problem?

4 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

Eta-expanding a thunk is tricky:

let thunk = f x
in . . .

=⇒ let thunk y = f x y
in . . .

Sharing can be lost!

(unless “thunk” is used at most once in “. . . ”)



What exactly is. . . the problem?

4 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

Eta-expanding a thunk is tricky:

let thunk = f x
in . . .

=⇒ let thunk y = f x y
in . . .

Sharing can be lost!

(unless “thunk” is used at most once in “. . . ”)



What exactly is. . . co-call cardinality analysis?

5 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

G0(if p then x else y) = p
x

y

G0(f x y) = f

x

y



What exactly is. . . Call Arity?

6 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

Call Arity
=

Arity analysis with co-call cardinality analysis

Now foldl can be a good consumer in list-fusion!



What exactly is. . . Call Arity?

6 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

Call Arity
=

Arity analysis with co-call cardinality analysis

Now foldl can be a good consumer in list-fusion!



What exactly is. . . “safe”?

7 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

Safety: It is safe for the compiler to apply the
transformation, i.e. the performance
will not degrade.

Yes, it is synonymous to “improvement”.



What exactly is. . . “safe”?

7 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

Safety: It is safe for the compiler to apply the
transformation, i.e. the performance
will not degrade.

Yes, it is synonymous to “improvement”.



What exactly is. . . could possibly go wrong?

8 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

A bug in Call Arity

⇓

Too much eta-expansion

⇓

Loss of sharing

⇓

Work is duplicated

⇓

Allocation is increasing

No (such) bug

⇑

Theorem: Call Arity does not
increase the number
of allocations



What exactly is. . . could possibly go wrong?

8 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

A bug in Call Arity

⇓

Too much eta-expansion

⇓

Loss of sharing

⇓

Work is duplicated

⇓

Allocation is increasing

No (such) bug

⇑

Theorem: Call Arity does not
increase the number
of allocations



What exactly is. . . could possibly go wrong?

8 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

A bug in Call Arity

⇓

Too much eta-expansion

⇓

Loss of sharing

⇓

Work is duplicated

⇓

Allocation is increasing

No (such) bug

⇑

Theorem: Call Arity does not
increase the number
of allocations



What exactly is. . . could possibly go wrong?

8 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

A bug in Call Arity

⇓

Too much eta-expansion

⇓

Loss of sharing

⇓

Work is duplicated

⇓

Allocation is increasing

No (such) bug

⇑

Theorem: Call Arity does not
increase the number
of allocations



What exactly is. . . could possibly go wrong?

8 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

A bug in Call Arity

⇓

Too much eta-expansion

⇓

Loss of sharing

⇓

Work is duplicated

⇓

Allocation is increasing

No (such) bug

⇑

Theorem: Call Arity does not
increase the number
of allocations



What exactly is. . . could possibly go wrong?

8 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

A bug in Call Arity

⇓

Too much eta-expansion

⇓

Loss of sharing

⇓

Work is duplicated

⇓

Allocation is increasing

No (such) bug

⇑

Theorem: Call Arity does not
increase the number
of allocations



What exactly is. . . could possibly go wrong?

8 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

A bug in Call Arity

⇓

Too much eta-expansion

⇓

Loss of sharing

⇓

Work is duplicated

⇓

Allocation is increasing

No (such) bug

⇑

Theorem: Call Arity does not
increase the number
of allocations



How did you prove that?

9 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

1st ingredient Sufficiently detailed semantics:

Launchbury’s natural semantics for lazy evaluation.

Γ

heap before

: e

current expression

⇓ ∆

heap afterwards

: v

final value



How did you prove that?

9 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

1st ingredient Sufficiently detailed semantics:

Sestoft’s mark-1 virtual machine

(Γ

current heap

, e

current expression

, S

current stack

)⇒ (Γ′

next heap

, e′

next expression

, S′

next stack

)



How did you prove that?

10 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

2nd ingredient Abstract view on what calls what:

Trace trees!

T0(if p then x else y) =
y

xp

T0(f x y) =

y
xy
y
x

xf

Co-call graphs approximates trace trees
It even is a Galois immersion.



How did you prove that?

10 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

2nd ingredient Abstract view on what calls what:

Trace trees!

T0(if p then x else y) =
y

xp

T0(f x y) =

y
xy
y
x

xf

Co-call graphs approximates trace trees
It even is a Galois immersion.



How did you prove that?

10 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

2nd ingredient Abstract view on what calls what:

Trace trees!

T0(if p then x else y) =
y

xp

T0(f x y) =

y
xy
y
x

xf

Co-call graphs approximates trace trees
It even is a Galois immersion.



How did you prove that?

11 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

3nd ingredient A way to handle a large proof:

Refinement proofs

Arity
analysis

+
any

cardinality
analysis

impl.←−−

Arity
analysis

+
a

trace tree
analysis

approx.←−−−−

Arity
analysis

+
a co-call

graph
analysis

impl.←−− Call Arity



How did you prove that?

11 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

3nd ingredient A way to handle a large proof:

Refinement proofs

Arity
analysis

+
any

cardinality
analysis

impl.←−−

Arity
analysis

+
a

trace tree
analysis

approx.←−−−−

Arity
analysis

+
a co-call

graph
analysis

impl.←−− Call Arity



Are you sure?

12 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

Syntax (using Nominal logic)
Semantics (Launchbury, Sestoft, denotational)
Data types (Co-call graphs, trace trees)
... and of course the proofs

λ
→

∀
=Is

ab
el
le

β

α

HOL



But. . .

13 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

The formalization gap!



But. . .

13 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

The formalization gap!



But. . .

13 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

The formalization gap!



But. . .

13 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

The formalization gap!



Bug #10176

14 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

let foo x = error ". . . "
in . . . case foo a b of . . .

⇓ Strictness analyzer

let foo x = error ". . . " -- Strictness: <L,U>b
in . . . case foo a b of . . .

⇓ Call Arity

let foo x y = error ". . . " y -- Strictness: <L,U>b
in . . . case foo a b of . . .

⇓ Simplifier

let foo x y = error ". . . " y -- Strictness: <L,U>b
in . . . case foo a of {}



Conclusion

15 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

Yes, we can. . .
formally prove a compiler transformation to be safe.

Increased the quality
Uncovered a bug missed by
tests.
Refactorable
when the code changes
Provides high assurance

Very tedious
Still only worth it in certain
domains?
Formalization gap
Is GHC the wrong target?



Conclusion

15 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

Yes, we can. . .
formally prove a compiler transformation to be safe.

Increased the quality
Uncovered a bug missed by
tests.
Refactorable
when the code changes
Provides high assurance

Very tedious
Still only worth it in certain
domains?
Formalization gap
Is GHC the wrong target?



Conclusion

15 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

Yes, we can. . .
formally prove a compiler transformation to be safe.

Increased the quality
Uncovered a bug missed by
tests.
Refactorable
when the code changes
Provides high assurance

Very tedious
Still only worth it in certain
domains?
Formalization gap
Is GHC the wrong target?



16 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

Thank you for your attention.

Minecraft image c© CC-BY-NC-SA iScr34m http://fav.me/d3lhdq2
Island image c© CC0 CSITDMS https://pixabay.com/de/insel-strand-sandstrand-philippinen-218578/

Bridge image c© CC-BY-SA Sulfur https://commons.wikimedia.org/wiki/File:Hoan_Bridge.jpg
Car drawing c© CC-BY-NC Randall Munroe https://what- if.xkcd.com/61/

http://fav.me/d3lhdq2
https://pixabay.com/de/insel-strand-sandstrand-philippinen-218578/
https://commons.wikimedia.org/wiki/File:Hoan_Bridge.jpg
https://what-if.xkcd.com/61/


Backup slide: How tedious, really?

17 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

AEnv

AList-Utils

AList-Utils-HOLCF

AList-Utils-Nominal

Abstract-Denotational-Props

AbstractDenotational

AbstractTransform

AnalBinds

Arity

Arity-Nominal

ArityAnalysisAbinds

ArityAnalysisCorrDenotational

ArityAnalysisFix

ArityAnalysisFixProps

ArityAnalysisSig

ArityAnalysisSpec

ArityAnalysisStack

ArityConsistent

ArityEtaExpansion

ArityEtaExpansionSafe

ArityStack

ArityTransform

ArityTransformSafe CallArityEnd2End

CallArityEnd2EndSafe

CardArityTransformSafe

Cardinality-Domain

Cardinality-Domain-Lists

CardinalityAnalysisSig

CardinalityAnalysisSpec

CoCallAnalysisBinds

CoCallAnalysisImpl

CoCallAnalysisSig

CoCallAnalysisSpec

CoCallAritySig

CoCallFix

CoCallGraph

CoCallGraph-Nominal CoCallGraph-TTree

CoCallImplSafe

CoCallImplTTree

CoCallImplTTreeSafe

ConstOn

Denotational

Env

Env-HOLCFEnv-Nominal Env-Set-Cpo

EtaExpansion

EtaExpansionSafe

EvalHeap

HOLCF-Join

HOLCF-Join-Classes HOLCF-Utils

HasESem

HeapSemantics

Iterative

List-Interleavings

NoCardinalityAnalysis

Nominal-HOLCF

Nominal-Utils Pointwise

Sestoft

SestoftConf

SestoftGC

Set-Cpo

Substitution

TTree

TTree-HOLCF

TTreeAnalysisSig

TTreeAnalysisSpec

TTreeImplCardinality

TTreeImplCardinalitySafe

Terms

TransformTools

TrivialArityAnal

Value

Value-Nominal

Vars

[HOLCF-Nominal2]

9 man-months
12,000 loc
1,200 lemmas
79 theories



Backup slide: That bug that was found

18 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

Call Arity initially would
eta-expand thunks in a
recursive group, as long as
the recursion is linear.

foo a =
let go | a == "m"

= ń x. if x == 0
then 1
else x ∗ go (x-1)

| a == "p"
= ń x. if x == 0

then 0
else x + go (x-1)

in go 100


