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I formally proved that

Call Arity is safe.
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What exactly is. . . Call Arity?
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Call Arity is an arity analysis:

let fac 10 = id
fac x = ńy. fac (x+1) (y∗x)

in fac 0 1
=⇒

let fac 10 y = y
fac x y = fac (x+1) (y∗x)

in fac 0 1

So far: Naive forward arity analysis, see Gill’s PhD thesis from 96
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Eta-expanding a thunk is tricky:

let thunk = f x
in . . .

=⇒ let thunk y = f x y
in . . .

Sharing can be lost!

(unless “thunk” is used at most once in “. . . ”)
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What exactly is. . . co-call cardinality analysis?
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G0(if p then x else y) = p
x

y

G0(f x y) = f

x

y
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Call Arity
=

Arity analysis with co-call cardinality analysis

Now foldl can be a good consumer in list-fusion!
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Safety: It is safe for the compiler to apply the
transformation, i.e. the performance
will not degrade.

Yes, it is synonymous to “improvement”.
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What exactly is. . . could possibly go wrong?
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A bug in Call Arity

⇓

Too much eta-expansion

⇓

Loss of sharing

⇓

Work is duplicated

⇓

Allocation is increasing

No (such) bug

⇑

Theorem: Call Arity does not
increase the number
of allocations
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How did you prove that?

9 2015-09-03 Joachim Breitner - Formally Proving a Compiler Transformation Safe PROGRAMMING PARADIGMS GROUP

KIT

1st ingredient Sufficiently detailed semantics:

Launchbury’s natural semantics for lazy evaluation.

Γ

heap before

: e

current expression

⇓ ∆

heap afterwards

: v

final value
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1st ingredient Sufficiently detailed semantics:

Sestoft’s mark-1 virtual machine

(Γ

current heap

, e

current expression

, S

current stack

)⇒ (Γ′

next heap

, e′

next expression

, S′

next stack

)
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2nd ingredient Abstract view on what calls what:

Trace trees!

T0(if p then x else y) =
y

xp

T0(f x y) =

y
xy
y
x

xf

Co-call graphs approximates trace trees
It even is a Galois immersion.
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3nd ingredient A way to handle a large proof:

Refinement proofs

Arity
analysis

+
any

cardinality
analysis

impl.←−−

Arity
analysis

+
a

trace tree
analysis

approx.←−−−−

Arity
analysis

+
a co-call

graph
analysis

impl.←−− Call Arity
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Are you sure?
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Syntax (using Nominal logic)
Semantics (Launchbury, Sestoft, denotational)
Data types (Co-call graphs, trace trees)
... and of course the proofs

λ
→

∀
=Is

ab
el
le

β

α

HOL
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The formalization gap!
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Bug #10176
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let foo x = error ". . . "
in . . . case foo a b of . . .

⇓ Strictness analyzer

let foo x = error ". . . " -- Strictness: <L,U>b
in . . . case foo a b of . . .

⇓ Call Arity

let foo x y = error ". . . " y -- Strictness: <L,U>b
in . . . case foo a b of . . .

⇓ Simplifier

let foo x y = error ". . . " y -- Strictness: <L,U>b
in . . . case foo a of {}
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Yes, we can. . .
formally prove a compiler transformation to be safe.

Increased the quality
Uncovered a bug missed by
tests.
Refactorable
when the code changes
Provides high assurance

Very tedious
Still only worth it in certain
domains?
Formalization gap
Is GHC the wrong target?
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Thank you for your attention.

Minecraft image c© CC-BY-NC-SA iScr34m http://fav.me/d3lhdq2
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Bridge image c© CC-BY-SA Sulfur https://commons.wikimedia.org/wiki/File:Hoan_Bridge.jpg
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Backup slide: How tedious, really?
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AEnv

AList-Utils

AList-Utils-HOLCF

AList-Utils-Nominal

Abstract-Denotational-Props

AbstractDenotational

AbstractTransform

AnalBinds

Arity

Arity-Nominal

ArityAnalysisAbinds

ArityAnalysisCorrDenotational

ArityAnalysisFix

ArityAnalysisFixProps

ArityAnalysisSig

ArityAnalysisSpec

ArityAnalysisStack

ArityConsistent

ArityEtaExpansion

ArityEtaExpansionSafe

ArityStack

ArityTransform

ArityTransformSafe CallArityEnd2End

CallArityEnd2EndSafe

CardArityTransformSafe

Cardinality-Domain

Cardinality-Domain-Lists

CardinalityAnalysisSig

CardinalityAnalysisSpec

CoCallAnalysisBinds

CoCallAnalysisImpl

CoCallAnalysisSig

CoCallAnalysisSpec

CoCallAritySig

CoCallFix

CoCallGraph

CoCallGraph-Nominal CoCallGraph-TTree

CoCallImplSafe

CoCallImplTTree

CoCallImplTTreeSafe

ConstOn

Denotational

Env

Env-HOLCFEnv-Nominal Env-Set-Cpo

EtaExpansion

EtaExpansionSafe

EvalHeap

HOLCF-Join

HOLCF-Join-Classes HOLCF-Utils

HasESem

HeapSemantics

Iterative

List-Interleavings

NoCardinalityAnalysis

Nominal-HOLCF

Nominal-Utils Pointwise

Sestoft

SestoftConf

SestoftGC

Set-Cpo

Substitution

TTree

TTree-HOLCF

TTreeAnalysisSig

TTreeAnalysisSpec

TTreeImplCardinality

TTreeImplCardinalitySafe

Terms

TransformTools

TrivialArityAnal

Value

Value-Nominal

Vars

[HOLCF-Nominal2]

9 man-months
12,000 loc
1,200 lemmas
79 theories



Backup slide: That bug that was found
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Call Arity initially would
eta-expand thunks in a
recursive group, as long as
the recursion is linear.

foo a =
let go | a == "m"

= ń x. if x == 0
then 1
else x ∗ go (x-1)

| a == "p"
= ń x. if x == 0

then 0
else x + go (x-1)

in go 100


